Beware the Data Governance Ides of March

WindowsLiveWriter-TheIdesofMarchandtheTheatreofDataQuality_80BF-

Morte de Césare (Death of Caesar) by Vincenzo Camuccini, 1798

Today is the Ides of March (March 15), which back in 44 BC was definitely not a good day to be Julius Caesar, who was literally stabbed in the back by the Roman Senate during his assassination in the Theatre of Pompey (as depicted above), which was spearheaded by Brutus and Cassius in a failed attempt to restore the Roman Republic, but instead resulted in a series of civil wars that ultimately led to the establishment of the permanent Roman Empire by Caesar’s heir Octavius (aka Caesar Augustus).

“Beware the Ides of March” is the famously dramatized warning from William Shakespeare’s play Julius Caesar, which has me pondering whether a data governance program implementation has an Ides of March (albeit a less dramatic one—hopefully).

Hybrid Approach (starting Top-Down) is currently leading my unscientific poll about the best way to approach data governance, acknowledging executive sponsorship and a data governance board will be required for the top-down-driven activities of funding, policy making and enforcement, decision rights, and arbitration of conflicting business priorities as well as organizational politics.

The definition of data governance policies illustrates the intersection of business, data, and technical knowledge spread throughout the organization, revealing how interconnected and interdependent the organization is.  The policies provide a framework for the communication and collaboration of business, data, and technical stakeholders, and establish an enterprise-wide understanding of the roles and responsibilities involved, and the accountability required to support the organization’s daily business activities.

The process of defining data governance policies resembles the communication and collaboration of the Roman Republic, but the process of implementing and enforcing data governance policies resembles the command and control of the Roman Empire.

During this transition of power, from policy definition to policy implementation and enforcement, lies the greatest challenge for a data governance program.  Even though no executive sponsor is the Data Governance Emperor (not even Caesar CEO) and the data governance board is not the Data Governance Senate, a heavy-handed top-down approach to data governance can make policy compliance feel like imperial rule and policy enforcement feel like martial law.  Although a series of enterprise civil wars is unlikely to result, the data governance program is likely to fail without the support of a strong and stable bottom-up foundation.

The enforcement of data governance policies is often confused with traditional management notions of command and control, but the enduring success of data governance requires an organizational culture that embodies communication and collaboration, which is mostly facilitated by bottom-up-driven activities led by the example of data stewards and other peer-level change agents.

“Beware the Data Governance Ides of March” is my dramatized warning about relying too much on the top-down approach to implementing data governance—and especially if your organization has any data stewards named Brutus or Cassius.

Data Governance Frameworks are like Jigsaw Puzzles

Data Governance Jigsaw Puzzle.png

In a recent interview, Jill Dyché explained a common misconception, namely that a data governance framework is not a strategy.  “Unlike other strategic initiatives that involve IT,” Jill explained, “data governance needs to be designed.  The cultural factors, the workflow factors, the organizational structure, the ownership, the political factors, all need to be accounted for when you are designing a data governance roadmap.”

“People need a mental model, that is why everybody loves frameworks,” Jill continued.  “But they are not enough and I think the mistake that people make is that once they see a framework, rather than understanding its relevance to their organization, they will just adapt it and plaster it up on the whiteboard and show executives without any kind of context.  So they are already defeating the purpose of data governance, which is to make it work within the context of your business problems, not just have some kind of mental model that everybody can agree on, but is not really the basis for execution.”

“So it’s a really, really dangerous trend,” Jill cautioned, “that we see where people equate strategy with framework because strategy is really a series of collected actions that result in some execution — and that is exactly what data governance is.”

And in her excellent article Data Governance Next Practices: The 5 + 2 Model, Jill explained that data governance requires a deliberate design so that the entire organization can buy into a realistic execution plan, not just a sound bite.  As usual, I agree with Jill, since, in my experience, many people expect a data governance framework to provide eureka-like moments of insight.

In The Myths of Innovation, Scott Berkun debunked the myth of the eureka moment using the metaphor of a jigsaw puzzle.

“When you put the last piece into place, is there anything special about that last piece or what you were wearing when you put it in?” Berkun asked.  “The only reason that last piece is significant is because of the other pieces you’d already put into place.  If you jumbled up the pieces a second time, any one of them could turn out to be the last, magical piece.”

“The magic feeling at the moment of insight, when the last piece falls into place,” Berkun explained, “is the reward for many hours (or years) of investment coming together.  In comparison to the simple action of fitting the puzzle piece into place, we feel the larger collective payoff of hundreds of pieces’ worth of work.”

Perhaps the myth of the data governance framework could also be debunked using the metaphor of a jigsaw puzzle.

Data governance requires the coordination of a complex combination of a myriad of factors, including executive sponsorship, funding, decision rights, arbitration of conflicting priorities, policy definition, policy implementation, data quality remediation, data stewardship, business process optimization, technology enablement, change management — and many other puzzle pieces.

How could a data governance framework possibly predict how you will assemble the puzzle pieces?  Or how the puzzle pieces will fit together within your unique corporate culture?  Or which of the many aspects of data governance will turn out to be the last (or even the first) piece of the puzzle to fall into place in your organization?  And, of course, there is truly no last piece of the puzzle, since data governance is an ongoing program because the business world constantly gets jumbled up by change.

So, data governance frameworks are useful, but only if you realize that data governance frameworks are like jigsaw puzzles.

Data Quality in Six Verbs

Once upon a time when asked on Twitter to identify a list of critical topics for data quality practitioners, my pithy (with only 140 characters in a tweet, pithy is as good as it gets) response was, and especially since I prefer emphasizing the need to take action, to propose six critical verbs: Investigate, Communicate, Collaborate, Remediate, Inebriate, and Reiterate.

Lest my pith be misunderstood aplenty, this blog post provides more detail, plus links to related posts, about what I meant.

1 — Investigate

Data quality is not exactly a riddle wrapped in a mystery inside an enigma.  However, understanding your data is essential to using it effectively and improving its quality.  Therefore, the first thing you must do is investigate.

So, grab your favorite (preferably highly caffeinated) beverage, get settled into your comfy chair, roll up your sleeves and starting analyzing that data.  Data profiling tools can be very helpful with raw data analysis.

However, data profiling is elementary, my dear reader.  In order for you to make sense of those data elements, you require business context.  This means you must also go talk with data’s best friends—its stewards, analysts, and subject matter experts.

Six blog posts related to Investigate:

2 — Communicate

After you have completed your preliminary investigation, the next thing you must do is communicate your findings, which helps improve everyone’s understanding of how data is being used, verify data’s business relevancy, and prioritize critical issues.

Keep in mind that communication is mostly about listening.  Also, be prepared to face “data denial” whenever data quality is discussed.  This is a natural self-defense mechanism for the people responsible for business processes, technology, and data, which is understandable because nobody likes to be blamed (or feel blamed) for causing or failing to fix data quality problems.

No matter how uncomfortable these discussions may be at times, they are essential to evaluating the potential ROI of data quality improvements, defining data quality standards, and most importantly, providing a working definition of success.

Six blog posts related to Communicate:

3 — Collaborate

After you have investigated and communicated, now you must rally the team that will work together to improve the quality of your data.  A cross-disciplinary team will be needed because data quality is neither a business nor a technical issue—it is both.

Therefore, you will need the collaborative effort of business and technical folks.  The business folks usually own the data, or at least the business processes that create it, so they understand its meaning and daily use.  The technical folks usually own the hardware and software comprising your data architecture.  Both sets of folks must realize they are all “one company folk” that must collaborate in order to be successful.

No, you don’t need a folk singer, but you may need an executive sponsor.  The need for collaboration might sound rather simple, but as one of my favorite folk singers taught me, sometimes the hardest thing to learn is the least complicated.

Six blog posts related to Collaborate:

4 — Remediate

Resolving data quality issues requires a combination of data cleansing and defect prevention.  Data cleansing is reactive and its common (and deserved) criticism is that it essentially treats the symptoms without curing the disease. 

Defect prevention is proactive and through root cause analysis and process improvements, it essentially is the cure for the quality ills that ail your data.  However, a data governance framework is often necessary for defect prevention to be successful.  As is patience and understanding since it will require a strategic organizational transformation that doesn’t happen overnight.

The unavoidable reality is that data cleansing is used to correct today’s problems while defect prevention is busy building a better tomorrow for your organization.  Fundamentally, data quality requires a hybrid discipline that combines data cleansing and defect prevention into an enterprise-wide best practice.

Six blog posts related to Remediate:

5 — Inebriate

I am not necessarily advocating that kind of inebriation.  Instead, think Emily Dickinson (i.e., “Inebriate of air am I” – it’s a line from a poem about happiness that, yes, also happens to make a good drinking song). 

My point is that you must not only celebrate your successes, but celebrate them quite publicly.  Channel yet another poet (Walt Whitman) and sound your barbaric yawp over the cubicles of your company: “We just improved the quality of our data!”

Of course, you will need to be more specific.  Declare success using words illustrating the business impact of your achievements, such as mitigated risks, reduced costs, or increased revenues — those three are always guaranteed executive crowd pleasers.

Six blog posts related to Inebriate:

6 — Reiterate

Like the legend of the phoenix, the end is also a new beginning.  Therefore, don’t get too inebriated, since you are not celebrating the end of your efforts.  Your data quality journey has only just begun.  Your continuous monitoring must continue and your ongoing improvements must remain ongoing.  Which is why, despite the tension this reality, and this bad grammatical pun, might cause you, always remember that the tense of all six of these verbs is future continuous.

Six blog posts related to Reiterate:

What Say You?

Please let me know what you think, pithy or otherwise, by posting a comment below.  And feel free to use more than six verbs.

Finding Data Quality

WindowsLiveWriter-FindingDataQuality_F0E9-

Have you ever experienced that sinking feeling, where you sense if you don’t find data quality, then data quality will find you?

In the spring of 2003, Pixar Animation Studios produced one of my all-time favorite Walt Disney Pictures—Finding Nemo

This blog post is an hommage to not only the film, but also to the critically important role into which data quality is cast within all of your enterprise information initiatives, including business intelligence, master data management, and data governance. 

I hope that you enjoy reading this blog post, but most important, I hope you always remember: “Data are friends, not food.”

Data Silos

WindowsLiveWriter-FindingDataQuality_F0E9-

“Mine!  Mine!  Mine!  Mine!  Mine!”

That’s the Data Silo Mantra—and it is also the bane of successful enterprise information management.  Many organizations persist on their reliance on vertical data silos, where each and every business unit acts as the custodian of their own private data—thereby maintaining their own version of the truth.

Impressive business growth can cause an organization to become a victim of its own success.  Significant collateral damage can be caused by this success, and most notably to the organization’s burgeoning information architecture.

Earlier in an organization’s history, it usually has fewer systems and easily manageable volumes of data, thereby making managing data quality and effectively delivering the critical information required to make informed business decisions everyday, a relatively easy task where technology can serve business needs well—especially when the business and its needs are small.

However, as the organization grows, it trades effectiveness for efficiency, prioritizing short-term tactics over long-term strategy, and by seeing power in the hoarding of data, not in the sharing of information, the organization chooses business unit autonomy over enterprise-wide collaboration—and without this collaboration, successful enterprise information management is impossible.

A data silo often merely represents a microcosm of an enterprise-wide problem—and this truth is neither convenient nor kind.

Data Profiling

WindowsLiveWriter-FindingDataQuality_F0E9-

“I see a light—I’m feeling good about my data . . . Good feeling’s gone—AHH!”

Although it’s not exactly a riddle wrapped in a mystery inside an enigma,  understanding your data is essential to using it effectively and improving its quality—to achieve these goals, there is simply no substitute for data analysis.

Data profiling can provide a reality check for the perceptions and assumptions you may have about the quality of your data.  A data profiling tool can help you by automating some of the grunt work needed to begin your analysis.

However, it is important to remember that the analysis itself can not be automated—you need to translate your analysis into the meaningful reports and questions that will facilitate more effective communication and help establish tangible business context.

Ultimately, I believe the goal of data profiling is not to find answers, but instead, to discover the right questions. 

Discovering the right questions requires talking with data’s best friends—its stewards, analysts, and subject matter experts.  These discussions are a critical prerequisite for determining data usage, standards, and the business relevant metrics for measuring and improving data quality.  Always remember that well performed data profiling is highly interactive and a very iterative process.

Defect Prevention

WindowsLiveWriter-FindingDataQuality_F0E9-

“You, Data-Dude, takin’ on the defects.

You’ve got serious data quality issues, dude.

Awesome.”

Even though it is impossible to truly prevent every problem before it happens, proactive defect prevention is a highly recommended data quality best practice because the more control enforced where data originates, the better the overall quality will be for enterprise information.

Although defect prevention is most commonly associated with business and technical process improvements, after identifying the burning root cause of your data defects, you may predictably need to apply some of the principles of behavioral data quality.

In other words, understanding the complex human dynamics often underlying data defects is necessary for developing far more effective tactics and strategies for implementing successful and sustainable data quality improvements.

Data Cleansing

WindowsLiveWriter-FindingDataQuality_F0E9-

“Just keep cleansing.  Just keep cleansing.

Just keep cleansing, cleansing, cleansing.

What do we do?  We cleanse, cleanse.”

That’s not the Data Cleansing Theme Song—but it can sometimes feel like it.  Especially whenever poor data quality negatively impacts decision-critical information, the organization may legitimately prioritize a reactive short-term response, where the only remediation will be fixing the immediate problems.

Balancing the demands of this data triage mentality with the best practice of implementing defect prevention wherever possible, will often create a very challenging situation for you to contend with on an almost daily basis.

Therefore, although comprehensive data remediation will require combining reactive and proactive approaches to data quality, you need to be willing and able to put data cleansing tools to good use whenever necessary.

Communication

WindowsLiveWriter-FindingDataQuality_F0E9-

“It’s like he’s trying to speak to me, I know it.

Look, you’re really cute, but I can’t understand what you’re saying.

Say that data quality thing again.”

I hear this kind of thing all the time (well, not the “you’re really cute” part).

Effective communication improves everyone’s understanding of data quality, establishes a tangible business context, and helps prioritize critical data issues. 

Keep in mind that communication is mostly about listening.  Also, be prepared to face “data denial” when data quality problems are discussed.  Most often, this is a natural self-defense mechanism for the people responsible for business processes, technology, and data—and because of the simple fact that nobody likes to feel blamed for causing or failing to fix the data quality problems.

The key to effective communication is clarity.  You should always make sure that all data quality concepts are clearly defined and in a language that everyone can understand.  I am not just talking about translating the techno-mumbojumbo, because even business-speak can sound more like business-babbling—and not just to the technical folks.

Additionally, don’t be afraid to ask questions or admit when you don’t know the answers.  Many costly mistakes can be made when people assume that others know (or pretend to know themselves) what key concepts and other terminology actually mean.

Never underestimate the potential negative impacts that the point of view paradox can have on communication.  For example, the perspectives of the business and technical stakeholders can often appear to be diametrically opposed.

Practicing effective communication requires shutting our mouth, opening our ears, and empathically listening to each other, instead of continuing to practice ineffective communication, where we merely take turns throwing word-darts at each other.

Collaboration

WindowsLiveWriter-FindingDataQuality_F0E9-

“Oh and one more thing:

When facing the daunting challenge of collaboration,

Work through it together, don't avoid it.

Come on, trust each other on this one.

Yes—trust—it’s what successful teams do.”

Most organizations suffer from a lack of collaboration, and as noted earlier, without true enterprise-wide collaboration, true success is impossible.

Beyond the data silo problem, the most common challenge for collaboration is the divide perceived to exist between the Business and IT, where the Business usually owns the data and understands its meaning and use in the day-to-day operation of the enterprise, and IT usually owns the hardware and software infrastructure of the enterprise’s technical architecture.

However, neither the Business nor IT alone has all of the necessary knowledge and resources required to truly be successful.  Data quality requires that the Business and IT forge an ongoing and iterative collaboration.

You must rally the team that will work together to improve the quality of your data.  A cross-disciplinary team will truly be necessary because data quality is neither a business issue nor a technical issue—it is both, truly making it an enterprise issue.

Executive sponsors, business and technical stakeholders, business analysts, data stewards, technology experts, and yes, even consultants and contractors—only when all of you are truly working together as a collaborative team, can the enterprise truly achieve great things, both tactically and strategically.

Successful enterprise information management is spelled E—A—C.

Of course, that stands for Enterprises—Always—Collaborate.  The EAC can be one seriously challenging place, dude.

You don’t know if you know what they know, or if they know what you know, but when you know, then they know, you know?

It’s like first you are all like “Whoa!” and they are all like “Whoaaa!” then you are like “Sweet!” and then they are like “Totally!”

This critical need for collaboration might seem rather obvious.  However, as all of the great philosophers have taught us, sometimes the hardest thing to learn is the least complicated.

Okay.  Squirt will now give you a rundown of the proper collaboration technique:

“Good afternoon. We’re gonna have a great collaboration today.

Okay, first crank a hard cutback as you hit the wall.

There’s a screaming bottom curve, so watch out.

Remember: rip it, roll it, and punch it.”

Finding Data Quality

WindowsLiveWriter-FindingDataQuality_F0E9-

As more and more organizations realize the critical importance of viewing data as a strategic corporate asset, data quality is becoming an increasingly prevalent topic of discussion.

However, and somewhat understandably, data quality is sometimes viewed as a small fish—albeit with a “lucky fin”—in a much larger pond.

In other words, data quality is often discussed only in its relation to enterprise information initiatives such as data integration, master data management, data warehousing, business intelligence, and data governance.

There is nothing wrong with this perspective, and as a data quality expert, I admit to my general tendency to see data quality in everything.  However, regardless of the perspective from which you begin your journey, I believe that eventually you will be Finding Data Quality wherever you look as well.

 

Council Data Governance

Inspired by the great Eagles song Hotel California, this DQ-Song “sings” about the common mistake of convening a council too early when starting a new data governance program.  Now, of course, data governance is a very important and serious subject, which is why some people might question whether or not music is the best way to discuss data governance.

Although I understand that skepticism, I can’t help but recall the words of Frank Zappa:

“Information is not knowledge;

Knowledge is not wisdom;

Wisdom is not truth;

Truth is not beauty;

Beauty is not love;

Love is not music;

Music is the best.”

Council Data Governance

Down a dark deserted hallway, I walked with despair
As the warm smell of bagels rose up through the air
Up ahead in the distance, I saw a shimmering light
My head grew heavy and my sight grew dim
I had to attend another data governance council meeting
As I stood in the doorway
I heard the clang of the meeting bell

And I was thinking to myself
This couldn’t be heaven, but this could be hell
As stakeholders argued about the data governance way
There were voices down the corridor
I thought I heard them say . . .

Welcome to the Council Data Governance
Such a dreadful place (such a dreadful place)
Time crawls along at such a dreadful pace
Plenty of arguing at the Council Data Governance
Any time of year (any time of year)
You can hear stakeholders arguing there

Their agendas are totally twisted, with means to their own end
They use lots of pretty, pretty words, which I don’t comprehend
How they dance around the complex issues with sweet sounding threats
Some speak softly with remorse, some speak loudly without regrets

So I cried out to the stakeholders
Can we please reach consensus on the need for collaboration?
They said, we haven’t had that spirit here since nineteen ninety nine
And still those voices they’re calling from far away
Wake you up in the middle of this endless meeting
Just to hear them say . . .

Welcome to the Council Data Governance
Such a dreadful place (such a dreadful place)
Time crawls along at such a dreadful pace
They argue about everything at the Council Data Governance
And it’s no surprise (it’s no surprise)
To hear defending the status quo alibis

Bars on all of the windows
Rambling arguments, anything but concise
We are all just prisoners here
Of our own device
In the data governance council chambers
The bickering will never cease
They stab it with their steely knives
But they just can’t kill the beast

Last thing I remember, I was
Running for the door
I had to find the passage back
To the place I was before
Relax, said the stakeholders
We have been programmed by bureaucracy to believe
You can leave the council meeting any time you like
But success with data governance, you will never achieve!

 

More Data Quality Songs

Data Love Song Mashup

I’m Gonna Data Profile (500 Records)

A Record Named Duplicate

New Time Human Business

You Can’t Always Get the Data You Want

I’m Bringing DQ Sexy Back

Imagining the Future of Data Quality

The Very Model of a Modern DQ General

More Data Governance Posts

Beware the Data Governance Ides of March

Data Governance Star Wars: Bureaucracy versus Agility

Aristotle, Data Governance, and Lead Rulers

Data Governance needs Searchers, not Planners

Data Governance Frameworks are like Jigsaw Puzzles

Is DG a D-O-G?

The Hawthorne Effect, Helter Skelter, and Data Governance

Data Governance and the Buttered Cat Paradox

Total Information Risk Management

OCDQ Radio is an audio podcast about data quality and its related disciplines, produced and hosted by Jim Harris.

During this episode, I am joined by special guest Dr. Alexander Borek, the inventor of Total Information Risk Management (TIRM) and the leading expert on how to apply risk management principles to data management.  Dr. Borek is a frequent speaker at international information management conferences and author of many research articles covering a range of topics, including EIM, data quality, crowd sourcing, and IT business value.  In his current role at IBM, Dr. Borek applies data analytics to drive IBM’s worldwide corporate strategy.  Previously, he led a team at the University of Cambridge to develop the TIRM process and test it in a number of different industries.  He holds a PhD in engineering from the University of Cambridge.

This podcast discusses his book Total Information Risk Management: Maximizing the Value of Data and Information Assets, which is now available world-wide and is a must read for all data and information managers who want to understand and measure the implications of low quality data and information assets.  The book provides step by step instructions, along with illustrative examples from studies in many different industries, on how to implement total information risk management, which will help your organization:

  • Learn how to manage data and information for business value.
  • Create powerful and convincing business cases for all your data and information management, data governance, big data, data warehousing, business intelligence, and business analytics initiatives, projects, and programs.
  • Protect your organization from risks that arise through poor data and information assets.
  • Quantify the impact of having poor data and information.

 

Additional Listening Options:

 

Popular OCDQ Radio Episodes

Clicking on the link will take you to the episode’s blog post:

  • Demystifying Data Science — Guest Melinda Thielbar, a Ph.D. Statistician, discusses what a data scientist does and provides a straightforward explanation of key concepts such as signal-to-noise ratio, uncertainty, and correlation.
  • Data Quality and Big Data — Guest Tom Redman (aka the “Data Doc”) discusses Data Quality and Big Data, including if data quality matters less in larger data sets, and if statistical outliers represent business insights or data quality issues.
  • Demystifying Master Data Management — Guest John Owens explains the three types of data (Transaction, Domain, Master), the four master data entities (Party, Product, Location, Asset), and the Party-Role Relationship, which is where we find many of the terms commonly used to describe the Party master data entity (e.g., Customer, Supplier, Employee).
  • Data Governance Star Wars — Special Guests Rob Karel and Gwen Thomas joined this extended, and Star Wars themed, discussion about how to balance bureaucracy and business agility during the execution of data governance programs.
  • The Johari Window of Data Quality — Guest Martin Doyle discusses helping people better understand their data and assess its business impacts, not just the negative impacts of bad data quality, but also the positive impacts of good data quality.
  • Data Profiling Early and Often — Guest James Standen discusses data profiling concepts and practices, and how bad data is often misunderstood and can be coaxed away from the dark side if you know how to approach it.
  • Studying Data Quality — Guest Gordon Hamilton discusses the key concepts from recommended data quality books, including those which he has implemented in his career as a data quality practitioner.