Caffeinated Thoughts on Technology for Midsize Businesses

If you are having trouble viewing this video, then you can watch it on Vimeo via this link:vimeo.com/71338997

The following links are to the resources featured in or related to the content of this video:

  • Get Bold with Your Social Media: http://goo.gl/PCQ11 (Sandy Carter Book Review by Debbie Laskey)
IBM Logo.jpg

A Big Data Platform for Midsize Businesses

If you’re having trouble viewing this video, watch it on Vimeo via this link:A Big Data Platform for Midsize Businesses

The following links are to the infographics featured in this video, as well as links to other related resources:

  • Webcast Replay: Why Big Data Matters to the Midmarket: http://goo.gl/A1WYZ (No Registration Required)
  • IBM’s 2012 Big Data Study with Feedback from People who saw Results: http://goo.gl/MmRAv (Registration Required)
  • Participate in IBM’s 2013 Business Value Survey on Analytics and Big Data: http://goo.gl/zKSPM (Registration Required)
IBM Logo.jpg

Cloud Benefits for Midsize Businesses

If you’re having trouble viewing this video, watch it on Vimeo via this link:Cloud Benefits for Midsize Businesses on Vimeo

The following links are to the infographics and eBook featured in this video, as well as other related resources:

IBM Logo.jpg

Business Analytics for Midsize Businesses

As this growing list of definitions for big data attests, big data evangelist and IBM thought leader James Kobielus rightfully warns that big data is in danger of definitional overkill.  But most midsize business owners are less concerned about defining big data as they are about, as Laurie McCabe recently blogged, determining whether big data is relevant for their business.

“The fact of the matter is, big is a relative term,” McCabe explained, “relative to the amount of information that your organization needs to sift through to find the insights you need to operate the business more proactively and profitably.”

McCabe also noted that this is not just a problem for big businesses, since getting better insights from the data you already have is a challenge for businesses of all sizes.  Midsize businesses “may not be dealing with terabytes of data,” McCabe explained, “but many are finding that tools that used to suffice—such as Excel spreadsheets—fall short even when it comes to analyzing internal transactional databases.”  McCabe also provided recommendations for how midsize businesses can put big data to work.

The recent IBM study The Case for Business Analytics in Midsize Firms lists big data as one of the trends making a compelling case for the growing importance of business analytics for midsize businesses.  The study also noted that important functional data continues to live in departmental spreadsheets, and state-of-the-art business analytics solutions are needed to make it easy to pull all that data, along with data from other sources, together in a meaningful way.  Despite the common misconception that such solutions are too expensive for midsize businesses, solutions are now available that can deliver analytics capabilities to help overcome big data challenges without requiring a big upfront investment in hardware or software.

Phil Simon, author of Too Big to Ignore: The Business Case for Big Data, recently blogged about reporting versus analytics, explaining the essence of analytics is it goes beyond the what and where provided by reporting, and tries to explain the why.

Big data isn’t the only reason why analytics is becoming more of a necessity.  But with the barriers to what it costs and where it can be deployed becoming easier to overcome, business analytics is becoming more commonplace in midsize businesses.

IBM Logo.jpg

Business Intelligence for Midsize Businesses

Business intelligence is one of those phrases that everyone agrees is something all organizations, regardless of their size, should be doing.  After all, no organization would admit to doing business stupidity.  Nor, I presume, would any vendor admit to selling it.

But not everyone seems to agree on what the phrase means.  Personally, I have always defined business intelligence as the data analytics performed in support of making informed business decisions (i.e., for me, business intelligence = decision support).

Oftentimes, this analytics is performed on data integrated, cleansed, and consolidated into a repository (e.g., a data warehouse).  Other times, it’s performed on a single data set (e.g., a customer information file).  Either way, business decision makers interact with the analytical results via static reports, data visualizations, dynamic dashboards, and ad hoc querying and reporting tools.

But robust business intelligence and analytics solutions used to be perceived as something only implemented by big businesses, as evinced in the big price tags usually associated with them.  However, free and open source software, cloud computingmobile, social, and a variety of as-a-service technologies drove the consumerization of IT, driving down the costs of solutions, enabling small and midsize businesses to afford them.  Additionally, the open data movement lead to a wealth of free public data sets that can be incorporated into business intelligence and analytics solutions (examples can be found at kdnuggets.com/datasets).

Lyndsay Wise, author of the insightful book Using Open Source Platforms for Business Intelligence (to listen to a podcast about the book, click here: OSBI on OCDQ Radio), recently blogged about business intelligence for small and midsize businesses.

Wise advised that “recent market changes have shifted the market in favor of small and midsize businesses.  Before this, most were limited by requirements for large infrastructures, high-cost licensing, and limited solution availability.  With this newly added flexibility and access to lower price points, business intelligence and analytics solutions are no longer out of reach.”

 

This post was written as part of the IBM for Midsize Business program, which provides midsize businesses with the tools, expertise and solutions they need to become engines of a smarter planet. I’ve been compensated to contribute to this program, but the opinions expressed in this post are my own and don’t necessarily represent IBM’s positions, strategies, or opinions.

 

Related Posts

The Big Datastillery

Smart Big Data Adoption for Midsize Businesses

Big Data is not just for Big Businesses

Big Data Lessons from Orbitz

The Graystone Effects of Big Data

Will Big Data be Blinded by Data Science?

Social Business is more than Social Marketing

Social Media Marketing: From Monologues to Dialogues

Social Media for Midsize Businesses

Barriers to Cloud Adoption

Leveraging the Cloud for Application Development

Cloud Computing for Midsize Businesses

Cloud Computing is the New Nimbyism

Devising a Mobile Device Strategy

The Age of the Mobile Device

Word of Mouth has become Word of Data

Information Asymmetry versus Empowered Customers

Talking Business about the Weather

The Big Datastillery

If you’re having trouble viewing this video, you can watch it on Vimeo by clicking on this link: The Big Datastillery on Vimeo

To view or download the infographic featured in the video, click on this direct link to its PDF: The Big Datastillery.pdf

 

This video was sponsored by the IBM for Midsize Business program, which provides midsize businesses with the tools, expertise and solutions they need to become engines of a smarter planet. I’ve been compensated to contribute to this program, but the opinions expressed in this video are my own and don’t necessarily represent IBM’s positions, strategies, or opinions.

 

Related Posts

Smart Big Data Adoption for Midsize Businesses

Big Data is not just for Big Businesses

Social Business is more than Social Marketing

Social Media Marketing: From Monologues to Dialogues

Social Media for Midsize Businesses

Cloud Computing is the New Nimbyism

Leveraging the Cloud for Application Development

Barriers to Cloud Adoption

Will Big Data be Blinded by Data Science?

Big Data Lessons from Orbitz

The Graystone Effects of Big Data

Talking Business about the Weather

Word of Mouth has become Word of Data

Information Asymmetry versus Empowered Customers

The Age of the Mobile Device

Devising a Mobile Device Strategy

Open MIKE Podcast — Episode 12

Method for an Integrated Knowledge Environment (MIKE2.0) is an open source delivery framework for Enterprise Information Management, which provides a comprehensive methodology that can be applied across a number of different projects within the Information Management space.  For more information, click on this link: openmethodology.org/wiki/What_is_MIKE2.0

The Open MIKE Podcast is a video podcast show, hosted by Jim Harris, which discusses aspects of the MIKE2.0 framework, and features content contributed to MIKE 2.0 Wiki Articles, Blog Posts, and Discussion Forums.

 

Episode 12: Information Development Book

If you’re having trouble viewing this video, you can watch it on Vimeo by clicking on this link: Open MIKE Podcast on Vimeo

 

MIKE2.0 Content Featured in or Related to this Podcast

Information Development Book: openmethodology.org/wiki/Information_Development_Book

Information Development: openmethodology.org/wiki/Information_Development

 

Previous Episodes of the Open MIKE Podcast

Clicking on the link will take you to the episode’s blog post:

Episode 01: Information Management Principles

Episode 02: Information Governance and Distributing Power

Episode 03: Data Quality Improvement and Data Investigation

Episode 04: Metadata Management

Episode 05: Defining Big Data

Episode 06: Getting to Know NoSQL

Episode 07: Guiding Principles for Open Semantic Enterprise

Episode 08: Information Lifecycle Management

Episode 09: Enterprise Data Management Strategy

Episode 10: Information Maturity QuickScan

Episode 11: Information Maturity Model

You can also find the videos and blog post summaries for every episode of the Open MIKE Podcast at: ocdqblog.com/MIKE

Smart Big Data Adoption for Midsize Businesses

In a previous post, I explained that big data is not just for big businesses.  During a recent interview Ed Abrams discussed how mobile, social, and cloud are driving big data adoption among midsize businesses.

As Sharon Hurley Hall recently blogged, midsize businesses are adopting social for the simple reason “a significant proportion of your potential customers are online, and while there they could be buying your product or service.”  She also makes a great point about social adoption not being only externally focused.  “Social business technologies will improve internal communication and knowledge-sharing.  The result is a better-informed and more engaged workforce, and the technology gives the ability to harness creativity and implement innovation to increase your competitive advantage.”

“Becoming more social,” Hall concluded, “doesn’t mean that employees waste time online; in fact, it means that everyone is better informed about both data and strategy, leading to business benefits.  The combination of integrating social technologies to improve your operational efficiency and harnessing social data to boost your knowledge base means that your business can be more competitive and more profitable.”

Hall’s insights also exemplify the proper perspective for midsize businesses to use when adopting big data.  No business of any size should adopt big data just because everyone is talking about it, nor simply because they think it might help their business.

As with everything in the business world, you should seek first to understand what big data adoption can offer, and what kind of investment it requires, before making any type of commitment.  The best thing about big data for midsize businesses is that it provides a big list of possibilities.  But trying to embrace all of the possibilities of big data would be a big mistake.  Start small with big data.  Smart big data adoption for midsize businesses means starting with well-defined, business-enhancing opportunities.

 

This post was written as part of the IBM for Midsize Business program, which provides midsize businesses with the tools, expertise and solutions they need to become engines of a smarter planet. I’ve been compensated to contribute to this program, but the opinions expressed in this post are my own and don’t necessarily represent IBM’s positions, strategies, or opinions.

 

Related Posts

Big Data is not just for Big Businesses

Devising a Mobile Device Strategy

Social Business is more than Social Marketing

Barriers to Cloud Adoption

Leveraging the Cloud for Application Development

Cloud Computing for Midsize Businesses

Social Media Marketing: From Monologues to Dialogues

Social Media for Midsize Businesses

Cloud Computing is the New Nimbyism

The Age of the Mobile Device

Big Data Lessons from Orbitz

The Graystone Effects of Big Data

Word of Mouth has become Word of Data

Information Asymmetry versus Empowered Customers

Talking Business about the Weather

Will Big Data be Blinded by Data Science?

Open MIKE Podcast — Episode 11

Method for an Integrated Knowledge Environment (MIKE2.0) is an open source delivery framework for Enterprise Information Management, which provides a comprehensive methodology that can be applied across a number of different projects within the Information Management space.  For more information, click on this link: openmethodology.org/wiki/What_is_MIKE2.0

The Open MIKE Podcast is a video podcast show, hosted by Jim Harris, which discusses aspects of the MIKE2.0 framework, and features content contributed to MIKE 2.0 Wiki Articles, Blog Posts, and Discussion Forums.

 

Episode 11: Information Maturity Model

If you’re having trouble viewing this video, you can watch it on Vimeo by clicking on this link: Open MIKE Podcast on Vimeo

 

MIKE2.0 Content Featured in or Related to this Podcast

Information Maturity Model: openmethodology.org/wiki/Information_Maturity_Model

Reactive Data Governance: openmethodology.org/wiki/Reactive_Data_Governance_Organisation

Proactive Data Governance: openmethodology.org/wiki/Proactive_Data_Governance_Organisation

Managed Data Governance: openmethodology.org/wiki/Managed_Data_Governance_Organisation

Optimal Data Governance: openmethodology.org/wiki/Optimal_Data_Governance_Organisation

 

Previous Episodes of the Open MIKE Podcast

Clicking on the link will take you to the episode’s blog post:

Episode 01: Information Management Principles

Episode 02: Information Governance and Distributing Power

Episode 03: Data Quality Improvement and Data Investigation

Episode 04: Metadata Management

Episode 05: Defining Big Data

Episode 06: Getting to Know NoSQL

Episode 07: Guiding Principles for Open Semantic Enterprise

Episode 08: Information Lifecycle Management

Episode 09: Enterprise Data Management Strategy

Episode 10: Information Maturity QuickScan

You can also find the videos and blog post summaries for every episode of the Open MIKE Podcast at: ocdqblog.com/MIKE

An Enterprise Resolution

This blog post is sponsored by the Enterprise CIO Forum and HP.

Since just before Christmas I posted An Enterprise Carol, I decided just before New Year’s to post An Enterprise Resolution.

In her article The Irrational Allure of the Next Big Thing, Karla Starr examined why people value potential over achievement in books, sports, and politics.  However, her findings apply equally well to technology and the enterprise’s relationship with IT.

“Subjectivity and hype,” Starr explained, “make people particularly prone to falling for Next Best Thing-ism.”

“Our collective willingness to jump on the bandwagon,” Starr continued, “seems at odds with one of psychology’s most robust findings: We are averse to uncertainty.  But as it turns out, our reaction to incomplete information depends on our interpretation of the scant data we do have.  Uncertainty is a sort of amplifier, intensifying our response whether it’s positive or negative.  As long as we react positively to the little information shown, we’re actually attracted to uncertainty.  It’s curiosity rather than knowledge that leads to increased cognitive engagement.  If the only information at hand is positive, your mind is going to fill in the gaps with other positive details.  A whiff of positive information is all we need to set our minds aflutter.”

In his book Thinking, Fast and Slow, Daniel Kahneman explained “when people are favorably disposed toward a technology, they rate it as offering large benefits and imposing little risk; when they dislike a technology, they can think only of its disadvantages, and few advantages come to mind.  People who receive a message extolling the benefits of a technology also change their beliefs about its risks.  Good technologies have few costs in the imaginary world we inhabit, bad technologies have no benefits, and all decisions are easy.  In the real world of course, we often face painful tradeoffs between benefits and costs.”

In his book What Technology Wants, Kevin Kelly explained that technology has a social dimension beyond the mere functionality it provides.  “We adopt new technologies largely because of what they do for us, but also in part because of what they mean to us.  Often we refuse to adopt technology for the same reason: because of how the avoidance reinforces or shapes our identity.”

So, in 2013, as the big data hype cycle comes down from the peak of inflated expectations, as the painful tradeoffs between the benefits and costs of cloud computing are faced, and as IT consumerization continues to reshape the identity of the IT function, let’s make an enterprise resolution to deal with these realities before we go off chasing the next best thing.  Happy New Year!

This blog post is sponsored by the Enterprise CIO Forum and HP.

 

Related Posts

An Enterprise Carol

Why does the sun never set on legacy applications?

Are Applications the La Brea Tar Pits for Data?

The Diffusion of the Consumerization of IT

Serving IT with a Side of Hash Browns

The Cloud is shifting our Center of Gravity

A Swift Kick in the AAS

Sometimes all you Need is a Hammer

Shadow IT and the New Prometheus

The IT Consumerization Conundrum

The Diderot Effect of New Technology

More Tethered by the Untethered Enterprise?

The Return of the Dumb Terminal

Magic Elephants, Data Psychics, and Invisible Gorillas

Big Data el Memorioso

Information Overload Revisited

The Limitations of Historical Analysis

OCDQ Radio - The Evolution of Enterprise Security

Enterprise Security and Social Engineering

Can the Enterprise really be Secured?

Open MIKE Podcast — Episode 10

Method for an Integrated Knowledge Environment (MIKE2.0) is an open source delivery framework for Enterprise Information Management, which provides a comprehensive methodology that can be applied across a number of different projects within the Information Management space.  For more information, click on this link: openmethodology.org/wiki/What_is_MIKE2.0

The Open MIKE Podcast is a video podcast show, hosted by Jim Harris, which discusses aspects of the MIKE2.0 framework, and features content contributed to MIKE 2.0 Wiki Articles, Blog Posts, and Discussion Forums.

 

Episode 10: Information Maturity QuickScan

If you’re having trouble viewing this video, you can watch it on Vimeo by clicking on this link: Open MIKE Podcast on Vimeo

 

MIKE2.0 Content Featured in or Related to this Podcast

Information Maturity (IM) QuickScan: openmethodology.org/wiki/Information_Maturity_QuickScan

IM QuickScan Template Documents: openmethodology.org/wiki/QuickScan_MS_Office_survey

Information Maturity Model: openmethodology.org/wiki/Information_Maturity_Model

 

Previous Episodes of the Open MIKE Podcast

Clicking on the link will take you to the episode’s blog post:

Episode 01: Information Management Principles

Episode 02: Information Governance and Distributing Power

Episode 03: Data Quality Improvement and Data Investigation

Episode 04: Metadata Management

Episode 05: Defining Big Data

Episode 06: Getting to Know NoSQL

Episode 07: Guiding Principles for Open Semantic Enterprise

Episode 08: Information Lifecycle Management

Episode 09: Enterprise Data Management Strategy

You can also find the videos and blog post summaries for every episode of the Open MIKE Podcast at: ocdqblog.com/MIKE

Big Data is not just for Big Businesses

“It is widely assumed that big data, which imbues a sense of grandiosity, is only for those large enterprises with enormous amounts of data and the dedicated IT staff to tackle it,” opens the recent article Big data: Why it matters to the midmarket.

Much of the noise generated these days about the big business potential of big data certainly seems to contain very little signal directed at small and midsize businesses.  Although it’s true that big businesses generate more data, faster, and in more varieties, a considerable amount of big data is externally generated, much of which is freely available for use by businesses of all sizes.

The easiest example is the poster child for leveraging big data — Google Search.  But there’s also a growing number of open data sources (e.g., weather data) and social data sources (e.g., Twitter), and, since more of the world is becoming directly digitized, more businesses are now using more data no matter how big they are.  Additionally, as Phil Simon wrote about in The New Small, the free and open source software, as-a-service, cloud, mobile, and social technology trends driving the consumerization of IT are enabling small and midsize businesses to, among other things, use more data and be more competitive with big businesses.

“Each minute of every day, information is produced about the activities of your business, your customers, and your industry,” explained Sarita Harbour in her recent blog post Harnessing Big Data: Giving Midsize Business a Competitive Edge.  “Hidden within this enormous amount of data are trends, patterns, and indicators that, if extracted and identified, can yield important information to make your business more efficient and more competitive, and ultimately, it can make you more money.”

However, the biggest driver of the misperception about big data is its over-identification with data volume.  Which is why earlier this year in his blog post It’s time for a new definition of big data, Robert Hillard used several examples to explain that big data refers more to big complexity than big volume.  While acknowledging that complex datasets tend to grow rapidly, thus making big data voluminous, his wonderfully pithy conclusion was that “big data can be very small and not all large datasets are big.”

Therefore, by extension we could say that the businesses using big data can be small, or mid-sized, and not all the businesses using big data are big.  But, of course, that’s not quite pithy enough.  So let’s simply say that big data is not just for big businesses.

 

This post was written as part of the IBM for Midsize Business program, which provides midsize businesses with the tools, expertise and solutions they need to become engines of a smarter planet.

 

Related Posts

Will Big Data be Blinded by Data Science?

Big Data Lessons from Orbitz

The Graystone Effects of Big Data

Word of Mouth has become Word of Data

Information Asymmetry versus Empowered Customers

Talking Business about the Weather

Magic Elephants, Data Psychics, and Invisible Gorillas

Open MIKE Podcast — Episode 05: Defining Big Data

Open MIKE Podcast — Episode 06: Getting to Know NoSQL

OCDQ Radio - Data Quality and Big Data

HoardaBytes and the Big Data Lebowski

Sometimes it’s Okay to be Shallow

How Predictable Are You?

The Wisdom of Crowds, Friends, and Experts

Exercise Better Data Management

A Tale of Two Datas

Darth Vader, Big Data, and Predictive Analytics

The Big Data Theory

Data Management: The Next Generation

Big Data: Structure and Quality

An Enterprise Carol

This blog post is sponsored by the Enterprise CIO Forum and HP.

Since ‘tis the season for reflecting on the past year and predicting the year ahead, while pondering this post my mind wandered to the reflections and predictions provided by the ghosts of A Christmas Carol by Charles Dickens.  So, I decided to let the spirit of Jacob Marley revisit my previous Enterprise CIO Forum posts to bring you the Ghosts of Enterprise Past, Present, and Future.

 

The Ghost of Enterprise Past

Legacy applications have a way of haunting the enterprise long after they should have been sunset.  The reason that most of them do not go gentle into that good night, but instead rage against the dying of their light, is some users continue using some of the functionality they provide, as well as the data trapped in those applications, to support the enterprise’s daily business activities.

This freaky feature fracture (i.e., technology supporting business needs being splintered across new and legacy applications) leaves many IT departments overburdened with maintaining a lot of technology and data that’s not being used all that much.

The Ghost of Enterprise Past warns us that IT can’t enable the enterprise’s future if it’s stuck still supporting its past.

 

The Ghost of Enterprise Present

While IT was busy battling the Ghost of Enterprise Past, a familiar, but fainter, specter suddenly became empowered by the diffusion of the consumerization of IT.  The rapid ascent of the cloud and mobility, spirited by service-oriented solutions that were more focused on the user experience, promised to quickly deliver only the functionality required right now to support the speed and agility requirements driving the enterprise’s business needs in the present moment.

Gifted by this New Prometheus, Shadow IT emerged from the shadows as the Ghost of Enterprise Present, with business-driven and decentralized IT solutions becoming more commonplace, as well as begrudgingly accepted by IT leaders.

All of which creates quite the IT Conundrum, forming yet another front in the war against Business-IT collaboration.  Although, in the short-term, the consumerization of IT usually better services the technology needs of the enterprise, in the long-term, if it’s not integrated into a cohesive strategy, it creates a complex web of IT that entangles the enterprise much more than it enables it.

And with the enterprise becoming much more of a conceptual, rather than a physical, entity due to the cloud and mobile devices enabling us to take the enterprise with us wherever we go, the evolution of enterprise security is now facing far more daunting challenges than the external security threats we focused on in the past.  This more open business environment is here to stay, and it requires a modern data security model, despite the fact that such a model could become the weakest link in enterprise security.

The Ghost of Enterprise Present asks many questions, but none more frightening than: Can the enterprise really be secured?

 

The Ghost of Enterprise Future

Of course, the T in IT wasn’t the only apparition previously invisible outside of the IT department to recently break through the veil in a big way.  The I in IT had its own coming-out party this year also since, as many predicted, 2012 was the year of Big Data.

Although neither the I nor the T is magic, instead of sugar plums, Data Psychics and Magic Elephants appear to be dancing in everyone’s heads this holiday season.  In other words, the predictive power of big data and the technological wizardry of Hadoop (as well as other NoSQL techniques) seem to be on the wish list of every enterprise for the foreseeable future.

However, despite its unquestionable potential, as its hype starts to settle down, the sobering realities of big data analytics will begin to sink in.  Data’s value comes from data’s usefulness.  If all we do is hoard data, then we’ll become so lost in the details that we’ll be unable to connect enough of the dots to discover meaningful patterns and convert big data into useful information that enables the enterprise to take action, make better decisions, or otherwise support its business activities.

Big data will force us to revisit information overload as we are occasionally confronted with the limitations of historical analysis, and blindsided by how our biases and preconceptions could silence the signal and amplify the noise, which will also force us to realize that data quality still matters in big data and that bigger data needs better data management.

As the Ghost of Enterprise Future, big data may haunt us with more questions than the many answers it will no doubt provide.

 

“Bah, Humbug!”

I realize that this post lacks the happy ending of A Christmas Carol.  To paraphrase Dickens, I endeavored in this ghostly little post to raise the ghosts of a few ideas, not to put my readers out of humor with themselves, with each other, or with the season, but simply to give them thoughts to consider about how to keep the Enterprise well in the new year.  Happy Holidays Everyone!

This blog post is sponsored by the Enterprise CIO Forum and HP.

 

Related Posts

Why does the sun never set on legacy applications?

Are Applications the La Brea Tar Pits for Data?

The Diffusion of the Consumerization of IT

The Cloud is shifting our Center of Gravity

More Tethered by the Untethered Enterprise?

A Swift Kick in the AAS

The UX Factor

Sometimes all you Need is a Hammer

Shadow IT and the New Prometheus

The IT Consumerization Conundrum

OCDQ Radio - The Evolution of Enterprise Security

The Cloud Security Paradox

The Good, the Bad, and the Secure

The Weakest Link in Enterprise Security

Can the Enterprise really be Secured?

Magic Elephants, Data Psychics, and Invisible Gorillas

Big Data el Memorioso

Information Overload Revisited

The Limitations of Historical Analysis

Data Silence

Open MIKE Podcast — Episode 09

Method for an Integrated Knowledge Environment (MIKE2.0) is an open source delivery framework for Enterprise Information Management, which provides a comprehensive methodology that can be applied across a number of different projects within the Information Management space.  For more information, click on this link: openmethodology.org/wiki/What_is_MIKE2.0

The Open MIKE Podcast is a video podcast show, hosted by Jim Harris, which discusses aspects of the MIKE2.0 framework, and features content contributed to MIKE 2.0 Wiki Articles, Blog Posts, and Discussion Forums.

 

Episode 09: Enterprise Data Management Strategy

If you’re having trouble viewing this video, you can watch it on Vimeo by clicking on this link: Open MIKE Podcast on Vimeo

 

MIKE2.0 Content Featured in or Related to this Podcast

Enterprise Data Management Strategy: openmethodology.org/wiki/Enterprise_Data_Management_Strategy_Solution_Offering

Executive Overview on EDM Strategy: openmethodology.org/w/images/6/6c/Executive_Overview_on_EDM_Strategy.pdf

You can also find the videos and blog post summaries for every episode of the Open MIKE Podcast at: ocdqblog.com/MIKE

Devising a Mobile Device Strategy

As I previously blogged in The Age of the Mobile Device, the disruptiveness of mobile devices to existing business models is difficult to overstate.  Mobile was also cited as one of the complementary technology forces, along with social and cloud, in the recent Harvard Business Review blog post by R “Ray” Wang about new business models being enabled by big data.

Since their disruptiveness to existing IT models is also difficult to overstate, this post ponders the Bring Your Own Device (BYOD) trend that’s forcing businesses of all sizes to devise a mobile device strategy.  BYOD is often not about bringing your own device to the office, but about bringing your own device with you wherever you go (even though the downside of this untethered enterprise may be that our always precarious work-life balance surrenders to the pervasive work-is-life feeling mobile devices can enable).

In his recent InformationWeek article, BYOD: Why Mobile Device Management Isn’t Enough, Michael Davis observed that too many IT departments are not devising a mobile device strategy, but instead “they’re merely scrambling to meet pressure from the CEO on down to offer BYOD options or increase mobile app access.”  Davis also noted that when IT creates BYOD policies, they often to fail to acknowledge mobile devices have to be managed differently, partially since they are not owned by the company.

An alternative to BYOD, which Brian Proffitt recently blogged about, is Corporate Owned, Personally Enabled (COPE). “Plenty of IT departments see BYOD as a demon to be exorcised from the cubicle farms,” Proffitt explained, “or an opportunity to dump the responsibility for hardware upkeep on their internal customers.  The idea behind BYOD is to let end users choose the devices, programs, and services that best meet their personal and business needs, with access, support, and security supplied by the company IT department — often with subsidies for device purchases.”  Whereas the idea behind COPE is “the organization buys the device and still owns it, but the employee is allowed, within reason, to install the applications they want on the device.”

Whether you opt for BYOD or COPE, Information Management recently highlighted 5 Trouble Spots to consider, which included assuming that mobile device security is already taken care of by in-house security initiatives, data integration disconnects with on-premises data essentially turning mobile devices into mobile data silos, and the combination of personal and business data, which complicates, among other things, remote wiping the data on a mobile device in the event of a theft or security violation, which is why, as Davis concluded, managing the company data on the device is more important than managing the device itself.

With the complex business and IT challenges involved, how is your midsize business devising a mobile device strategy?

 

This post was written as part of the IBM for Midsize Business program, which provides midsize businesses with the tools, expertise and solutions they need to become engines of a smarter planet.

 

Related Posts

The Age of the Mobile Device

The Return of the Dumb Terminal

More Tethered by the Untethered Enterprise?

OCDQ Radio - Social Media for Midsize Businesses

Social Media Marketing: From Monologues to Dialogues

Social Business is more than Social Marketing

The Cloud is shifting our Center of Gravity

Barriers to Cloud Adoption

OCDQ Radio - Cloud Computing for Midsize Businesses

Cloud Computing is the New Nimbyism

The Cloud Security Paradox

OCDQ Radio - The Evolution of Enterprise Security

The Graystone Effects of Big Data

Big Data Lessons from Orbitz

Will Big Data be Blinded by Data Science?