DQ-BE: Invitation to Duplication

Data Quality By Example (DQ-BE) is an OCDQ regular segment that provides examples of data quality key concepts.

I recently received my invitation to the Data Governance and Information Quality Conference, which will be held June 27-30 in San Diego, California at the Catamaran Resort Hotel and Spa.  Well, as shown above, I actually received both of my invitations.

Although my postal address is complete, accurate, and exactly the same on both of the invitations, my name is slightly different (“James” vs. “Jim”), and my title (“Data Quality Journalist” vs. “Blogger-in-Chief”) and company (“IAIDQ” vs. “OCDQ Blog”) are both completely different.  I wonder how many of the data quality software vendors sponsoring this conference would consider my invitations to be duplicates.  (Maybe I’ll use the invitations to perform a vendor evaluation on the exhibit floor.)

So it would seem that even “The Premier Event in Data Governance and Data Quality” can experience data quality problems.

No worries, I doubt the invitation system will be one of the “Practical Approaches and Success Stories” presented—unless it’s used as a practical approach to a success story about demonstrating how embarrassing it might be to send duplicate invitations to a data quality journalist and blogger-in-chief.  (I wonder if this blog post will affect the approval of my Press Pass for the event.)


DGIQ Event Button Okay, on a far more serious note, you should really consider attending this event.  As the conference agenda shows, there will be great keynote presentations, case studies, tutorials, and other sessions conducted by experts in data governance and data quality, including (among many others) Larry English, Danette McGilvray, Mike Ferguson, David Loshin, and Thomas Redman.


Related Posts

DQ-BE: Dear Valued Customer

Customer Incognita

Identifying Duplicate Customers

Adventures in Data Profiling (Part 7) – Customer Name

The Quest for the Golden Copy (Part 3) – Defining “Customer”

‘Tis the Season for Data Quality

The Seven Year Glitch

DQ-IRL (Data Quality in Real Life)

Data Quality, 50023

Once Upon a Time in the Data

The Semantic Future of MDM